Roadmap for searching cosmic rays correlated with the extraterrestrial neutrinos seen at IceCube
We have built sky maps showing the expected arrival directions of 120 EeV ultrahigh-energy cosmic rays (UHECRs) directionally correlated with the latest astrophysical neutrino tracks observed at IceCube, including the four-year high-energy starting events (HESEs) and the two-year northern tracks, taken as point sources. We have considered contributions to UHECR deflections from the Galactic and the extragalactic magnetic field and a UHECR composition compatible with the current expectations. We have used the Jansson-Farrar JF12 model for the Galactic magnetic field and an extragalactic magnetic field strength of 1 nG and coherence length of 1 Mpc. We observe that the regions outside of the Galactic plane are more strongly correlated with the neutrino tracks than those adjacent to or in it, where IceCube HESE events 37 and 47 are good candidates to search for excesses, or anisotropies, in the UHECR flux. On the other hand, clustered northern tracks around (l,b)=(0°,−30°) and (l,b)=(−150°,−30°) are promising candidates for a stacked point source search. For example, we have focused on the region of UHECR arrival directions, at 150 EeV, correlated with IceCube HESE event 37 located at (l,b)=(−137.1°,65.8°) in the northern hemisphere, far away from the Galactic plane, obtaining an angular size ∼5°, being ∼3° for 200 EeV and ∼8° for 120 EeV. We report a p value of 0.20 for a stacked point source search using current Auger and Telescope Array data, consistent with current results from both collaborations. Using Telescope Array data alone, we found a projected live time of 72 years to find correlations, but clearly this must improve with the planned Auger upgrade.
Año de publicación: 2017
We have built sky maps showing the expected arrival directions of 120 EeV ultrahigh-energy cosmic rays (UHECRs) directionally correlated with the latest astrophysical neutrino tracks observed at IceCube, including the four-year high-energy starting events (HESEs) and the two-year northern tracks, taken as point sources. We have considered contributions to UHECR deflections from the Galactic and the extragalactic magnetic field and a UHECR composition compatible with the current expectations. We have used the Jansson-Farrar JF12 model for the Galactic magnetic field and an extragalactic magnetic field strength of 1 nG and coherence length of 1 Mpc. We observe that the regions outside of the Galactic plane are more strongly correlated with the neutrino tracks than those adjacent to or in it, where IceCube HESE events 37 and 47 are good candidates to search for excesses, or anisotropies, in the UHECR flux. On the other hand, clustered northern tracks around (l,b)=(0°,−30°) and (l,b)=(−150°,−30°) are promising candidates for a stacked point source search. For example, we have focused on the region of UHECR arrival directions, at 150 EeV, correlated with IceCube HESE event 37 located at (l,b)=(−137.1°,65.8°) in the northern hemisphere, far away from the Galactic plane, obtaining an angular size ∼5°, being ∼3° for 200 EeV and ∼8° for 120 EeV. We report a p value of 0.20 for a stacked point source search using current Auger and Telescope Array data, consistent with current results from both collaborations. Using Telescope Array data alone, we found a projected live time of 72 years to find correlations, but clearly this must improve with the planned Auger upgrade.
Año de publicación: 2017
LHC forward physics
In early 2013 the LHC forward physics and diffraction working group (WG) was formed, as part of the activities of common interest to the LHC experiments organized by the LHC...
Año de publicación: 2016
In early 2013 the LHC forward physics and diffraction working group (WG) was formed, as part of the activities of common interest to the LHC experiments organized by the LHC...
Año de publicación: 2016
The Minimal 3 + 2 Neutrino Model vs. Higgs Decays
The minimal 3+2 neutrino model is a Type-I seesaw model with two Weyl fermions, singlets under the Standard Model. Apart from light neutrino masses and mixings, this model can be fully described by four additional parameters. In this work, we study the minimal 3+2 neutrino model in scenarios where the singlets have masses at the GeV scale. This can lead to Higgs decays into heavy neutrinos, which could be observable as displaced vertices at the LHC.
Año de publicación: 2016
The minimal 3+2 neutrino model is a Type-I seesaw model with two Weyl fermions, singlets under the Standard Model. Apart from light neutrino masses and mixings, this model can be fully described by four additional parameters. In this work, we study the minimal 3+2 neutrino model in scenarios where the singlets have masses at the GeV scale. This can lead to Higgs decays into heavy neutrinos, which could be observable as displaced vertices at the LHC.
Año de publicación: 2016
Impact of Galactic magnetic field modeling on searches of point sources via ultrahigh energy cosmic ray-neutrino correlations
We apply the Jansson-Farrar JF12 magnetic field model in the context of point source searches by correlating the Telescope Array ultrahigh energy cosmic ray data and the IceCube-40 neutrino candidates, as well as other magnetic field hypotheses. Our field hypotheses are: no magnetic field, the JF12 field considering only the regular component, the JF12 full magnetic field, which is a combination of regular and random field components, and the standard turbulent magnetic field used in previous correlation analyses. As expected from a neutrino sample such as IceCube-40, consistent with atmospheric neutrinos, we have found no significant correlation signal in all the cases. Therefore, this paper is mainly devoted to the comparison of the effect of the different magnetic field hypotheses on the minimum neutrino source flux strength required for a 5σ discovery and the derived 90% C.L. upper limits. We also incorporate in our comparison the cases of different power law indices α=2.2, α=2.5 for the neutrino point source flux. The differences in the 5σ discovery flux for our magnetic field hypotheses is ∼1%–50%, being the maximum difference with the regular JF12 field and standard turbulent field models, being the standard turbulent higher than the regular one, while the minimum is between the no magnetic field and regular JF12 field. Considering the current flux upper limits, we find that IceCube requires a lifetime ≳5 years to observe neutrino-UHECR correlation signals. Our analysis for different power law indices yielded the same relative behavior between different magnetic field models.
Año de publicación: 2016
We apply the Jansson-Farrar JF12 magnetic field model in the context of point source searches by correlating the Telescope Array ultrahigh energy cosmic ray data and the IceCube-40 neutrino candidates, as well as other magnetic field hypotheses. Our field hypotheses are: no magnetic field, the JF12 field considering only the regular component, the JF12 full magnetic field, which is a combination of regular and random field components, and the standard turbulent magnetic field used in previous correlation analyses. As expected from a neutrino sample such as IceCube-40, consistent with atmospheric neutrinos, we have found no significant correlation signal in all the cases. Therefore, this paper is mainly devoted to the comparison of the effect of the different magnetic field hypotheses on the minimum neutrino source flux strength required for a 5σ discovery and the derived 90% C.L. upper limits. We also incorporate in our comparison the cases of different power law indices α=2.2, α=2.5 for the neutrino point source flux. The differences in the 5σ discovery flux for our magnetic field hypotheses is ∼1%–50%, being the maximum difference with the regular JF12 field and standard turbulent field models, being the standard turbulent higher than the regular one, while the minimum is between the no magnetic field and regular JF12 field. Considering the current flux upper limits, we find that IceCube requires a lifetime ≳5 years to observe neutrino-UHECR correlation signals. Our analysis for different power law indices yielded the same relative behavior between different magnetic field models.
Año de publicación: 2016
Probing the Type I Seesaw mechanism with displaced vertices at the LHC
The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I Seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb−1 of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than (10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection.
Año de publicación: 2015
The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I Seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb−1 of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than (10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection.
Año de publicación: 2015
Searching for cavities of various densities in the Earth's crust with a low-energy antineutrino electron beta-beam
We propose searching for deep underground cavities of different densities in the Earth’s crust using a long-baseline ν̄ e disappearance experiment, realized through a low-energy β-beam with highly-enhanced luminosity. We focus on four cases: cavities with densities close to that of water, iron-banded formations, heavier mineral deposits, and regions of abnormal charge accumulation that have been posited to appear prior to the occurrence of an intense earthquake. The sensitivity to identify cavities attains confidence levels (C.L.s) higher than 3σ and 5σ for exposure times of three months and 1.5 years, respectively, and cavity densities below 1 g cm−3 or above 5 g cm−3, with widths greater than 200 km. We reconstruct the cavity density, width, and position, assuming one of them known while keeping the other two free. We obtain large allowed regions that improve as the cavity density differs more from the Earth’s mean density. Furthermore, we demonstrate that the knowledge of the cavity density is important to obtain O(10%) error on the width. Finally, we introduce an observable to quantify the presence of a cavity by changing the orientation of the ν̄ e beam, with which we are able to identify the presence of a cavity at the 2σ to 5σ C.L.
Año de publicación: 2015
We propose searching for deep underground cavities of different densities in the Earth’s crust using a long-baseline ν̄ e disappearance experiment, realized through a low-energy β-beam with highly-enhanced luminosity. We focus on four cases: cavities with densities close to that of water, iron-banded formations, heavier mineral deposits, and regions of abnormal charge accumulation that have been posited to appear prior to the occurrence of an intense earthquake. The sensitivity to identify cavities attains confidence levels (C.L.s) higher than 3σ and 5σ for exposure times of three months and 1.5 years, respectively, and cavity densities below 1 g cm−3 or above 5 g cm−3, with widths greater than 200 km. We reconstruct the cavity density, width, and position, assuming one of them known while keeping the other two free. We obtain large allowed regions that improve as the cavity density differs more from the Earth’s mean density. Furthermore, we demonstrate that the knowledge of the cavity density is important to obtain O(10%) error on the width. Finally, we introduce an observable to quantify the presence of a cavity by changing the orientation of the ν̄ e beam, with which we are able to identify the presence of a cavity at the 2σ to 5σ C.L.
Año de publicación: 2015
SUSY Renormalization Group Effects in Ultra High Energy Neutrinos
We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Φ0𝜈𝑒+𝜈¯𝑒:Φ0𝜈𝜇+𝜈¯𝜇:Φ0𝜈𝜏+𝜈¯𝜏)=(1:2:0),(0:1:0),(1:0:0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q 2 ≥ 107 GeV2. However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale C̆erenkov detector such as IceCube.
Año de publicación: 2011
We have explored the question of whether the renormalization group running of the neutrino mixing parameters in the Minimal Supersymmetric Standard Model is detectable with ultra-high energy neutrinos from active galactic nuclei (AGN). We use as observables the ratios of neutrino fluxes produced at the AGN, focusing on four different neutrino production models: (Φ0𝜈𝑒+𝜈¯𝑒:Φ0𝜈𝜇+𝜈¯𝜇:Φ0𝜈𝜏+𝜈¯𝜏)=(1:2:0),(0:1:0),(1:0:0), and (1 : 1 : 0). The prospects for observing deviations experimentally are taken into consideration, and we find out that it is necessary to impose a cut-off on the transferred momentum of Q 2 ≥ 107 GeV2. However, this condition, together with the expected low value of the diffuse AGN neutrino flux, yields a negligible event rate at a km-scale C̆erenkov detector such as IceCube.
Año de publicación: 2011
Resolving Standard and Nonstandard CP Violation Phases in Neutrino Oscillations
Neutrino oscillations can exhibit extra CP violation effects, beyond those expected from the standard Kobayashi‐Maskawa phase δ, if non‐standard neutrino interactions are at play. We show that it is possible...
Año de publicación: 2010
Neutrino oscillations can exhibit extra CP violation effects, beyond those expected from the standard Kobayashi‐Maskawa phase δ, if non‐standard neutrino interactions are at play. We show that it is possible...
Año de publicación: 2010
Energy-Independent New Physics in the Flavour Ratios of High-Energy Astrophysical Neutrinos
We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production ϕ0 e : ϕ0 μ: ϕ0 τ = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, ϕμ, and for the flavour ratios at Earth, R = ϕμ/ϕ e and S = ϕτ /ϕμ. CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of ϕμ, R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10−29 − 10−27 GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.
Año de publicación: 2010
We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production ϕ0 e : ϕ0 μ: ϕ0 τ = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, ϕμ, and for the flavour ratios at Earth, R = ϕμ/ϕ e and S = ϕτ /ϕμ. CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of ϕμ, R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10−29 − 10−27 GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.
Año de publicación: 2010
IceCube expectations for two high-energy neutrino production models at active galactic nuclei
We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 105 ≤ Eν/GeV ≤ 108. We have used the latest estimated discovery potential of the IceCube-86 array at the 5σ level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, α, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Γν/ΓCR, and the maximum redshift of the sources that contribute to the cosmic-ray flux, zCRmax. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of α = 2.7 obtained from fits to cosmic-ray data. Lower values of α, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5σ level or more is guaranteed.
Año de publicación: 2010
We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 105 ≤ Eν/GeV ≤ 108. We have used the latest estimated discovery potential of the IceCube-86 array at the 5σ level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, α, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Γν/ΓCR, and the maximum redshift of the sources that contribute to the cosmic-ray flux, zCRmax. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of α = 2.7 obtained from fits to cosmic-ray data. Lower values of α, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5σ level or more is guaranteed.
Año de publicación: 2010